Dr. Moreu’s Google Scholar, click here

Dr. Moreu’s Research Gate, click here

REFEREED JOURNAL PUBLICATIONS

    1. Robbins, E., Kuether, R. J., Paccini, B. & Moreu, F. (2023). Stabilizing a strongly nonlinear structure through shaker dynamics in fixed frequency voltage control tests. Mechanical Systems and Signal Processing Volume 190, May, Pg. 110–118. https://doi.org/10.1016/j.ymssp.2023.110118
    2. Yuan, Xinxing, Alan Smith, Fernando Moreu, Rodrigo Sarlo, Christopher D. Lippitt, Maryam Hojati, Sreenivas Alampalli, and Su Zhang. “Automatic evaluation of rebar spacing and quality using LiDAR data: Field application for bridge structural assessment.” Automation in Construction146 (2023): 104708. https://doi.org/10.1016/j.autcon.2022.104708
    3. Mojidra, R., Li, J., Mohammadkhorasani, A., Moreu, F., Bennett, C., & Collins, W. (2023). Vision-based fatigue crack detection using global motion compensation and video feature tracking. Earthquake Engineering and Engineering Vibration, 1-21. https://doi.org/10.1007/s11803-023-2156-1
    4. Nasimi, R., Moreu, F., & Fricke, G. M. (2023). Sensor equipped UAS for non-contact bridge inspections: field application. Sensors23(1), 470. https://doi.org/10.3390/s23010470
    5. Sadhu, A., Peplinski, J. E., Mohammadkhorasani, A., & Moreu, F. (2023). A Review of Data Management and Visualization Techniques for Structural Health Monitoring Using BIM and Virtual or Augmented Reality. Journal of Structural Engineering149(1), 03122006. https://orcid.org/0000-0001-5685-7087
    6. Malek, K., Mohammadkhorasani, A., & Moreu, F. (2022). Methodology to integrate augmented reality and pattern recognition for crack detection. ComputerAided Civil and Infrastructure Engineering. https://doi.org/10.1111/mice.12932
    7. Malek, K. & Moreu, F. (2022). Realtime conversion of cracks from pixel to engineering scale using Augmented Reality. Automation in Construction143, 104542. https://doi.org/10.1016/j.autcon.2022.104542
    8. Robbins, E., Kuether, R. J., & Moreu, F. (2022). Measuring nonlinearities of a cantilever beam using a low-cost efficient wireless intelligent sensor for strain (LEWIS-S). Engineering Research Express4(3), 035015. https://doi.org/10.1088/2631-8695/ac8337
    9. Montoya, A., Habtour, E., & Moreu, F. (2022). Detecting hidden transient events in noisy nonlinear time-series. Chaos: An Interdisciplinary Journal of Nonlinear Science32(7), 073131. https://doi.org/10.1063/5.0097973
    10. Woodall, J., Hossain, M., Maji, A., Moreu, F.; Transforming a Simple Structure Model to Represent a Complex Dynamic System with Unknown Boundary Restraints. Exp Tech(2022). https://doi.org/10.1007/s40799-021-00494-w
    11. Nasimi, R., Atcitty, S., Thompson, D., Murillo, J., Ball, M., Stormont, J., & Moreu, F. (2022). Use of remote structural tap testing devices deployed via ground vehicle for health monitoring of transportation infrastructure. Sensors, 22(4), 1458. https://doi.org/10.3390/s22041458
    12. Xu, D., Yuan, X., Ozdagli, A. I., Agüero, M., Nasimi, R., Wang, T., & Moreu, F. (2022). Over-height truck collisions with railway bridges: attenuation of damage using crash beams. Earthquake engineering and engineering vibration, 21(1), 237-252. https://doi.org/10.1007/s11803-022-2081-8
    13. Nasimi, R., Moreu, , & Stormont, J. (2021). Crack detection using tap-testing and machine learning techniques to prevent potential rockfall incidents. Engineering Research Express, 3(4), 045050. https://doi.org/10.1088/2631-8695/ac3fa0
    14. Yuan, X., Moreu, F., & Hojati, M. (2021). Cost-Effective Inspection of Rebar Spacing and Clearance Using RGB-D Sensors. Sustainability13(22), 12509. https://doi.org/10.3390/su132212509
    15. Wyckoff, E., Ball, M., & Moreu, F. (2021). Reducing gaze distraction for real‐time vibration monitoring using augmented reality. Structural Control and Health Monitoring, e3013. https://doi.org/10.1002/stc.3013
    16. Yuan, X., Smith, A., Sarlo, R., Lippitt, C. D., & Moreu, F. (2021). Automatic evaluation of rebar spacing using LiDAR data. Automation in Construction131, 103890. https://doi.org/10.1016/j.autcon.2021.103890
    17. Nasimi, R., & Moreu, F. (2021). Development and implementation of a laser–camera–UAV System to measure total dynamic transverse displacement. Journal of Engineering Mechanics147(8), 04021045. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001939
    18. Maji A, Moreu F, Woodall J, Hossain M. Error analyses of a Multi-Input-Multi-Output cantilever beam test. Journal of Vibration and Control. July 2021. https://doi.org/10.1177/10775463211033733
    19. Reda Taha, M.; Ayyub, B. M.; Soga, K.; Daghash, S.; Heras Murcia, D.; Moreu, F.; and Soliman, E. (2021). “Emerging Technologies for Resilient Infrastructure: Conspectus and Roadmap” ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering Vol 7, No 2 https://doi.org/10.1061/AJRUA6.0001134
    20. Nasimi, R., and Moreu, F. “A methodology for measuring the total displacements of structures using a laser–camera system.” ComputerAided Civil and Infrastructure Engineering 36, no. 4 (2021): 421-437. https://doi.org/10.1111/mice.12652
    21. Robbins, E., Cobo, N,, Diaz J. and Moreu, F. (2021) “Development of a low-cost efficient wireless intelligent sensor for strain measurements (LEWIS-S)” Measurement Science and Technology, February 5th, 2021 https://doi.org/10.1088/1361-6501/abe339
    22. Cardona Huerta, R., Moreu, F., & Lozano Galant, J. A. (2021). Aerial Tramway Sustainable Monitoring with an Outdoor Low-Cost Efficient Wireless Intelligent Sensor. Sustainability13(11), 6340. https://doi.org/10.3390/su13116340
    23. Chen L-K, Liu P, Zhu L-M, Ding J-B, Feng Y-L, Moreu F. (2021) “A simplified iterative approach for testing the pulse derailment of light rail vehicles across a viaduct to near-fault earthquake scenarios”. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. February 2021. https://doi.org/10.1177%2F0954409720987410
    24. Jiaqi, X. and Moreu, F. (2021). “A Review of Augmented Reality Applications in Civil Infrastructure during the 4th Industrial Revolution.” Frontiers in Built Environment 7 (2021): 28. https://doi.org/10.3389/fbuil.2021.640732
    25. Maharjan, D., Agüero, M., Mascarenas, D., Fierro, R., & Moreu, F. (2020). Enabling human–infrastructure interfaces for inspection using augmented reality. Structural Health Monitoring, 1475921720977017. https://doi.org/10.1177/1475921720977017
    26. Montoya, A., Habtour, E., & Moreu, F. (2020). Quantifying Information without Entropy: Identifying Intermittent Disturbances in Dynamical Systems. Entropy, 22(11), 1199. https://doi.org/10.3390/e22111199
    27. Garg, P., Nasimi, R., Ozdagli, A., Zhang, S., Mascarenas, D. D. L., Reda Taha, M., & Moreu, F. (2020). Measuring Transverse Displacements Using Unmanned Aerial Systems Laser Doppler Vibrometer (UAS-LDV): Development and Field Validation. Sensors, 20(21), 6051. https://doi.org/10.3390/s20216051
    28. Mascareñas, D. D., Ballor, J. P., McClain, O. L., Mellor, M. A., Shen, C. Y., Bleck, B., … & Moreu, F. (2020). Augmented reality for next generation infrastructure inspections. Structural Health Monitoring, 1475921720953846. https://journals.sagepub.com/doi/full/10.1177/1475921720953846
    29. Moreu, F., Maharjan, D., Wyckoff, E., & Zhu, C. (2020). Monitoring Human Induced Floor Vibrations for Quantifying Dance Moves. Frontiers in Built Environment, 6, 36. https://www.frontiersin.org/articles/10.3389/fbuil.2020.00036/full
    30. Taylor, R.M., Maharjan, D., Moreu, F. et al. (2020); Parametric study of 3D printed microneedle (MN) holders for interstitial fluid (ISF) extraction. Microsyst. Technol. https://doi.org/10.1007/s00542-020-04758-0
    31. Aguero, M., Maharjan, D., Rodriguez, M. D. P., Mascarenas, D. D. L., & Moreu, F. (2020). Design and Implementation of a Connection between Augmented Reality and Sensors. Robotics9(1), 3. https://doi.org/10.3390/robotics9010003
    32. Ozdagli, A. I., Moreu, F., Xu, D., & Wang, T. (2020). Experimental Analysis on Effectiveness of Crash Beams for Impact Attenuation of Overheight Vehicle Collisions on Railroad Bridges. Journal of Bridge Engineering25(1), 04019133. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001503
    33. Garg, P., Moreu, F., Ozdagli, A., Taha, M. R., & Mascareñas, D. (2019). Noncontact Dynamic Displacement Measurement of Structures Using a Moving Laser Doppler Vibrometer. Journal of Bridge Engineering24(9), 04019089. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001472
    34. Mascarenas, David Dennis Lee, Harden, Troy Anthony, Morales Garcia, John Evan, Boardman, Beth Leigh, Sosebee, Erin Marie, Blackhart, Craig, Cattaneo, Alessandro, Krebs, Matthew Scott, Tockstein, Jameson John, Green, Andre Walter, Dasari, Sudeep Rao, Bleck, Brian Mark, Katko, Benjamin Joseph, Moreu, Fernando, Maharjan, Dilendra, Aguero, Marlon, Fernandez, Ricardo, Trujillo, Julio B., and Wysong, Andrew Russell. Augmented Reality for Enabling Smart Nuclear Infrastructure. United States: N. p., 2019. https://www.frontiersin.org/articles/10.3389/fbuil.2019.00082/full
    35. Liu, B., Ozdagli, A. I., Moreu, F., & Chi, Q. (2019). Hybrid reference-free total displacement for railroad bridge campaign monitoring. Measurement Science and Technology. https://doi.org/10.1088/1361-6501/ab2091
    36. Gomez, J. A., Ozdagli, A. I., & Moreu, F. (2019). Reference-free dynamic displacements of railroad bridges using low-cost sensors. Journal of Intelligent Material Systems and Structures30(9), 1291-1305. https://doi.org/10.1177/1045389X17721375
    37. Aguero, M., Ozdagli, A., & Moreu, F. (2019). Measuring Reference-Free Total Displacements of Piles and Columns Using Low-Cost, Battery-Powered, Efficient Wireless Intelligent Sensors (LEWIS2). Sensors19(7), 1549. https://doi.org/10.3390/s19071549
    38. Moreu, F., Li, X., Li, S., & Zhang, D. (2018). Technical specifications of structural health monitoring for highway bridges: new Chinese structural health monitoring code. Frontiers in Built Environment4, 10. https://www.frontiersin.org/articles/10.3389/fbuil.2018.00010/full
    39. Liu, B.; Ozdagli, A.; Moreu, F. (2018); “Direct reference‐free measurement of displacements for railroad bridge management”; Structural Control and Health Monitoring. https://doi.org/10.1002/stc.2241
    40. Ozdagli, A. I., Liu, B., & Moreu, F. (2018). “Measuring Total Transverse Reference-Free Displacements for Condition Assessment of Timber Railroad Bridges: Experimental Validation.” Journal of Structural Engineering144(6), 04018047. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002041
    41. Ozdagli, Ali ; Liu, Bideng; Moreu, F.; (2018); “Low-cost, efficient wireless intelligent sensors (LEWIS) measuring real-time reference-free dynamic displacements.” Mechanical Systems and Signal Processing Volume 107, July, Pg. 343–356. https://doi.org/10.1016/j.ymssp.2018.01.034
    42. Moreu, ; Ayorinde, E.; Mason, J.; Farrar, C.; and Mascarenas, D.D.L. (2017); “Remote Railroad Bridge Structural Tap Testing Using Aerial Robots”; International Journal of Intelligent Robotics and Applications, 1-14. https://doi.org/10.1007/s41315-017-0041-7
    43. D. L. Mascarenas, F. Moreu, P. Cantu, D. Shields, J. Wadden, M. El Hadedy, C. Farrar (2017) “A compliant mechanism for inspecting extremely confined spaces”. Smart Materials and Structures, 26(11), 115028. https://doi.org/10.1088/1361-665X/aa9195
    44. Ozdagli, Ali ; Gomez, Jose A.; Moreu, F.; (2017); “Total reference-free displacements for condition assessment of timber railroad bridges using tilt”; Smart Structures and Systems; Volume 20, Number 5, November; pages 549-562. https://doi.org/10.12989/sss.2017.20.5.549
    45. Ozdagli, I., Gomez, J. A., & Moreu, F. (2017). “Real-Time Reference-Free Displacement of Railroad Bridges during Train-Crossing Events”. Journal of Bridge Engineering, 22 (10), 04017073. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001113
    46. Hoag, , Hoult, N., Take, A., Moreu, F., Le, H. and Tolikonda, V. (2017); “Measuring displacements of a railroad bridge using DIC and accelerometers”; Smart Structures and Systems Smart Structures and Systems; Volume 19, Number 2, February 2017. https://doi.org/10.12989/sss.2017.19.2.225
    47. Moreu, , Spencer Jr, B. F., Foutch, D. A., & Scola, S. (2017). Consequence-based management of railroad bridge networks. Structure and Infrastructure Engineering, 1-14. https://doi.org/10.1080/15732479.2016.1162817
    48. Moreu, ; Kim, R. E.; and Spencer, Jr., B. F. (2017); “Railroad Bridge Monitoring Using Wireless Smart Sensors”; Structural Control and Health Monitoring. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001530
    49. Kim, R. E.; Moreu, ; and Spencer, Jr., B. F. (2016); “Hybrid Model for Railroad Bridge Dynamics”; Journal of Structural Engineering Volume 142 Issue 10 – October 2016. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001530
    50. Moreu, ; Jo, H.; Li, J.; Kim, R. E., Scola, S.; Spencer, Jr., B. F.; and LaFave, J. M. (2016); “Reference-Free Displacement Estimation and Assessment for Railroad Bridges using Wireless Smart Sensors”; ASCE Journal of Bridge Engineering. Volume 21 Issue 2 – February 2016 https://doi.org/10.1061/(ASCE)BE.1943-5592.0000805
    51. Kim, E.; Moreu, F.; and Spencer, Jr., B. F. (2015); “System identification of an in-service railroad bridge using wireless smart sensors”; Smart Structures and Systems, 15(3), 683-698. https://doi.org/10.12989/sss.2015.15.3.683
    52. Moreu, ; Jo, H.; Li, J.; Kim, R.; Cho, S.; Kimmle, A.; Scola, S.; Le, H.; Spencer, Jr., B. F.; and LaFave, J. M. (2015); “Dynamic Assessment of Timber Railroad Bridges using Displacements”; ASCE Journal of Bridge Engineering, Volume 20 Issue 10 – October 2015. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000726